If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2-x)(5x+1)-(3+x)(x-1)+8x^-15x+3=0
We add all the numbers together, and all the variables
(-1x+2)(5x+1)-(x+3)(x-1)+8x^-15x+3=0
We add all the numbers together, and all the variables
-7x+(-1x+2)(5x+1)-(x+3)(x-1)+3=0
We multiply parentheses ..
(-5x^2-1x+10x+2)-7x-(x+3)(x-1)+3=0
We get rid of parentheses
-5x^2-1x+10x-7x-(x+3)(x-1)+2+3=0
We multiply parentheses ..
-5x^2-(+x^2-1x+3x-3)-1x+10x-7x+2+3=0
We add all the numbers together, and all the variables
-5x^2-(+x^2-1x+3x-3)+2x+5=0
We get rid of parentheses
-5x^2-x^2+1x-3x+2x+3+5=0
We add all the numbers together, and all the variables
-6x^2+8=0
a = -6; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-6)·8
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-6}=\frac{0-8\sqrt{3}}{-12} =-\frac{8\sqrt{3}}{-12} =-\frac{2\sqrt{3}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-6}=\frac{0+8\sqrt{3}}{-12} =\frac{8\sqrt{3}}{-12} =\frac{2\sqrt{3}}{-3} $
| 3/8x-1=5/x-4 | | 3x=3/4+2/2 | | x+x1/2=6 | | -x+9/5=2x+3/4 | | -(x-4)+2x-6=2 | | 5y-2+y-6=9y+10-6y+3 | | 8=0.5(w-3) | | -3(x-6)+4x=8-7 | | F(x)=4x^2+7x-6x=10,x=17 | | y=25-4•2 | | 5b+2=24 | | 2a-4-a=-5+7 | | 2x-3=1/7 | | 3p+7=0 | | 7(2p+13)-8=14p-13 | | (a+3)^2=36 | | 6y-7=y+23 | | 7-57m=-8m^2 | | 1/2(b+2)+3b=1 | | 7a+4-6a=3 | | 1/7-4/5w=1/5w+8/7 | | (8+z)(2z+5)=0 | | x+8-5=4-11 | | x^2-3.25x+1.08614232209=0 | | a+3/7=-4/7 | | 245=25x-(10x+250) | | 4x+5=17;2 | | (V+5)x-1/9=6 | | 5(-2+x)+1=7x+11-12x | | -4(n+2}=n-22 | | 12×^2+4x=0 | | 2z-31=-9z=24 |